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This paper presents an infinite-series solution to the creeping viscous motion of a 
fluid through low- and moderate-aspect-ratio pores. The flow field is divided into two 
simply bounded regions: a cylindrical volume bounded by the walls of the pore and 
the entrance and exit planes, and an infinite half-space outside the pore. Analytic 
solutions are first obtained in each region for unknown functions representing arbitrary 
axial and radial velocity profiles a t  the pore entrance (exit). These unknown functions 
are then determined by matching the normal and tangential stress a t  the pore opening. 

The results indicate that the velocity profile approaches to within 1.5 per cent of a 
Poiseuille profile after a short entrance distance of half the pore radius. I n  the far field 
the solution matches exactly the streamline pattern for a flow through an  orifice of 
zero thickness obtained by Sampson (1891). The pressure drop across the pore exhibits 
linear dependence on the aspect ratio and is closely approximated (less than one per 
cent error) by a simple algebraic expression. 

1. Introduction 
The creeping flow through a pore of finite length, including entrance and exit 

effects, has important applications to transport and filtration processes in biological 
and synthetic membranes. Some salient examples involving such motion include 
filtration of particle contaminants and aerosols, the molecular-sieving effects that are 
known to occur a t  the entrance of the so-called ‘small pores’ in biological membranes, 
the diffusion of macromolecules through vesicle attachment stalks in endothelial cell 
layers (Weinbaum & Caro 1976) and the Fahraeus-Lindqvist effect in blood capillaries 
(Fahraeus 1929; Fahraeus & Lindqvist 1931). 

While boundary collocation (Gluckman, Pfeffer & Weinbaum 197 1 ; Leichtberg, 
Pfeffer & Weinbaum 1976; Ganatos, Weinbaum & Pfeffer, 1980) and finite-element 
methods (Skalak, Chen & Chien 1972) have been applied with considerable success to 
internal flows in infiizitely long tubes and external flows past more general boundary 
shapes, there are no existing solutions for the creeping motion through finite-length 
pores or the motion of a particle through an orifice or a finite-length pore. These effect,s 
are believed to have an important influence at  low Reynolds numbers, where the 
influence of the boundaries decays algebraically. Existing analytic solutions have been 
limited to either the slow flow in an infinite half-space for an arbitrary prescribed 
velocity a t  the pore exit (Parmet & Saibel 1966) or the classic solution of Sampson 
(1891) for the flow through a circular hole in a zero-thickness plane wall. A number of 
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studies have also examined the locally valid two-dimensional flow near a sharp 
corner (Dean & Montagnon 1949; Lugt & Schwiderski 1965; Weinbaum 1968). The 
more difficult problem of determining the interaction between the flow inside and out- 
side the pore was attempted by Weil & Schenectady (1951) for the two-dimensional 
counterpart of the present study: the Stokes jet exiting a slit into a half-space. These 
authors did not provide sufficient matching conditions t o  determine uniquely the 
flow field : only the velocity was matched and not the normal and tangential compo- 
nents of the viscous-stress tensor. 

Weinbaum (1968) demonstrated the importance of the upstream influence on the 
pressure field and velocity profile for flow approaching the trailing edge of a blunt-base 
body. If upstream influence is neglected and a Blasius boundary-layer profile assumed 
just upstream of the corner, the pressure field corresponding to this solution cannot be 
matched with the uniform pressure field of the Blasius solution and an erroneous 
velocity field is predicted with separation occurring a t  the trailing edge. Similarly, 
the assumption that the flow inside the pore is fully developed and has a Poiseuille 
profile (Manton 1978) excludes the upstream influence in the pressure field across the 
edge of the orifice. Owing to the difficulty of analytically treating a three-dimensional 
corner flow interaction, several investigators have recently undertaken finite-difference 
Navier-Stokes solutions for representative pore geometries (Kanaoka, Emi & Nskada 
1974; Smith & Phillips 1975; Parker & Buzzard 1978). However, the finite-difference 
method is limited owing to the admissibility of a weak singularity in the pressure 
field a t  the edge of the orifice. The locally singular shear stress prevents accurate 
numerical description of the pressure field because of the mesh-size limitation. 

The problem of creeping flow through a finite-length orifice has eluded exact 
theoretical treatment because there is no natural co-ordinate system which can be 
used to satisfy the no-slip boundary conditions simultaneously inside on the orifice 
walls and outside on the wall which lies in the plane of the entrance or exit. The purpose 
of the present paper is to develop an efficient matching technique which could be used 
to treat an important class of previously unsolved axisymmetric creeping-motion 
problems where the general flow field can be divided into a set of simply bounded 
fields which cover the original flow field geometrically. Thus, the partitioning of a 
complex field may establish well-defined regions in which the solution for the velocity 
distribution is unique. One first satisfies the kinematic boundary conditions on the 
velocity in each region independently by prescribing in a general form the unknown 
velocity profile a t  the interface between any two adjacent regions. For a finite inter- 
face one chooses a convenient series representation with unknown coefficients. Hence, 
in each region one has a well-posed boundary-value problem which will admit a 
unique solution in terms of the unknown velocity at the interface with an adjacent 
region. This procedure assures continuity of the velocity field without accounting for 
the influence of the pressure field across the interfacial surfaces. I n  order to satisfy 
continuity of the pressure field, the normal and tangential stress a t  each interface have 
to be matched. This dynamic matching condition can be used to solve for the unknown 
coefficients in the general series representation of the local velocity profile. The method 
can also be applied to problems which include finite particles by making use of the 
collocation technique, described by Ganatos, Pfeffer & Weinbaum (1 978), to satisfy 
the no-slip boundary conditions on finite closed surfaces. This extension of the tech- 
nique to a sphere approaching an orifice or a disk is described in Dagan, Weinbaum & 
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FIGURE 1 .  Geometry of an orifice of finite length and diameter. 

Pfeffer (1981). Section 2 contains the mathematical formulation of the problem a t  
hand for a pore of arbitrary dimensions and a prescribed pressure drop across the 
orifice. I n  5 3 the solution, obtained by the new technique, is presented and the far- 
field solution compared to Sampson’s (1891) solution for the zero-thickness orifice. 
I n  addition, a simple expression is derived for the pressure drop across the orifice. 
Finally, in 5 4 the extension of the present method to more general external flows past 
arbitrary boundary shapes is discussed. 

2. Formulation for the creeping flow through a pore 
The flow of interest is axisymmetric, so that the Stokes stream function can be used. 

It is convenient to formulate the problem in terms of dimensionless (unprimed) co- 
ordinates which are defined in terms of dimensional (primed) co-ordinates (figure 1) by 

R = R’/a, Z = Z’/a, (2.1) 

where a is the radius of the pore and (R’, Z’) are the cylindrical co-ordinates. The 
dependent variables are expressed in dimensionless form, using fluid density p, the 
kinematic viscosity v and the pore radius a as follows: 

where $-’ is the stream function and P‘ is the pressure. 
17 F L h l  I I 5  
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By omitting the inertial terms from the steady-state Navier-Stokes equations and 

D2(D2@) = 0, (2 .3a)  

introducing the axisymmetric stream function, the following equation is obtained: 

where 0 2  is the generalized axisymmetric Stokesian operator, given by 

and the velocity components in the axial and radial directions are 

( 2 . 3 h )  

(2 .4a,  b )  

I n  accord with the comments in 9 1, we divide the flow field into two simply bounded 
regions: a cylindrical volume bounded by the walls of the pore of the exit plane and 
the symmetry plane a t  Z = 0, and an infinite half-space outside the pore. Solutions 
to ( 2 . 3 ~ )  which are suitable for representing an arbitrary disturbance generated by 
the wall a t  Z = L and which yield a finite velocity everywhere in the outer region are 
given by Parmet & Saibel (1965) in the form 

( 2 . 5 )  

where A ( @ )  and B(w) are unknown functions of w, J1 is the ordinary Bessel function 
of the first kind and L is the aspect ratio, or the dimensionless pore length. Inside the 
pore a symmetric solution about Z = 0, which generates finite velocities a t  R = 0 ,  
is constructed by superimposing the disturbances from the cylindrical boundary 
R = 1 given by Haberman & Sayre (1958), the vertical plane Z = 0 and the unknown 
flow that must match the solution in the infinite half-space Z L:  

m 

@II(R, 2) = C, R4 + Do R2 + 2 [C,RI,(a, R )  + D, R210(a, R ) ]  cos a,Z 
n = l  

m 

n= 1 
+ C [F,Zsinh(h,,,Z)+G,cosh(h,,,Z)]~J,(~,,,Rf (0 6 Z < L),  (2.6) 

where C,, Do, C,, . . ., G, are unknown constant coefficients, I, and 1, are modified 
Bessel functions of the first kind, An,v are the zeros of 4, and a, = nn/L. 

The kinematic solution for each region can now be obtained independently, provided 
the velocity a t  the exit of the pore is specified. This velocity, at the pore opening, is 
prescribed in a general form by a Fourier-Bessel series as follows : 

where f ( R ) / R  and -g(R)/R are the axial and radial velocity components at Z = I, 
and R 6 1, respectively, and a, and b, are unknown constant coefficients. 

Using the definition (2.7) for the exit velocity, the no-slip boundary conditions on 
the wall 2 = L are 
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i a p  
U f ( 1 , Z )  = -- (1 ,Z)  = 0 R aR (0  6 z Q L) ,  ( 2 . 9 ~ )  

(2.9b) 
I a p  

UII 1,Z) = -- - ( l ,Z)  = 0 (0  < z Q L) ,  R (  R a2 

have to  be satisfied in the inner region. 
Finally, the shear-stress matching condition a t  Z = L and 0 < R < 1 requires 

71. 1 3  = TI? 13 (2.10) 
where ri j  is the stress tensor. 

Application of the boundary conditions (2.8a, b )  along the wall Z = L results in 

/om wJo(wR) F*(w, L )  dw = F ( R ) ,  (2.11 0.) 

-sum wJl(wR) G*(w, L)  dw = G(R) ,  (2.11 b) 

where P*(w, 2)  = [Afw) + ZB(w) ]  e-"Z, (2.12 a) 

(2.12b) 

The right-hand sides of (2.1 1 )  represent the disturbances produced by the plane 
Z = L,  and propagate downst,ream. These disturbances are functions only of the 
radial co-ordinate R. Inspection of (2.11) shows that the unknown functions F* and 
G*, evaluated at  the plane of the opening, are simply Hankel transforms of these 
disturbances. The equations may be inverted to give 

1 
G * ( w , Z )  = -[(l -wZ)B(o)-A(w)]e-*JZ. 

w 

( 2 . 1 3 ~ )  

(2.13 b) 

Equations (2.13) give the F* and G* functions evaluated at Z = L in terms of the 
as yet unknown velocity components a t  the pore exit. To obtain these functions a t  
any value of 2 one must determine the unknown functions A(@) and B(w) in (2.12). 
The expressions for F* and G* obtained from (2.13) are substituted into (2.12), whose 
right-hand sides are evaluated at the plane Z = L. This gives rise to two linear alge- 
braic equations, which may be solved simultaneously to yield the unknown functions 
A ( w )  and B(w). Once these functions are obtained, they are substituted back into 
(2.12) to give the F* and G* functions at  any value of 2. The resulting expressions are 

[ 1 + w(Z - L)]  / ' f ( [ )  Jo(wf)  d[ + (2 - L )  1' g ( 5 )  Jl (wf)  d f ]  e-w(z-L), ( 2 . 1 4 ~ )  
0 0 

~ * ( w ,  Z )  = - (Z - L )  f ( 6 )  J ~ ( ~ E )  df - [i - W(Z - L)]  g g )  J , ( W ~ )  d f )  e-4Z-L).  

10'  J O '  (2.14b) 

Using the definition of the stream function, one can write the local fluid velocity 
a t  any point in the outer region as a function of the Hankel transforms of F* and G*, 

17-2 
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which in turn are functions of the unknown velocity components f and 9 a t  the pore 
exit 1 

uF*(u, Z )  J,(wR) dw, ( 2 . 1 5 ~ )  

(2.15b) 

where from (2.5) the expression for the stream function in the outer region is given by 

(2.16) 

The solution (2.16) satisfies the no-slip boundary conditions along the wall a t  the 
plane of the opening for any arbitrary axisymmetric velocity profile a t  the pore exit. 

The boundary conditions to be satisfied in the inner region at  R = 1 and at  Z = L 
are most conveniently applied by using the series representation of the exit velocity 
rather than the f and g functions. At R = 1 the no-slip boundary conditions (2.8) 
require that: 

W 

4C0+ Zoo+ Z { C 9 t a 7 L W , )  + D,[2~oo(anf+~,J l (a , ) ]}c~s~,Z  
n = l  

W 

( 2 . 1 7 ~ )  

(2.17b) 

The left-hand sides of (2.17) are simply the Fourier-series representations of the 
righbhand sides on the interval [0 ,  L]. They may be inverted to give 

1 
F,[Lcosh (A7L,lL) -- sinh (A7L,lL)] +G,sinh (An,lL)]Jo(A,,l), 

n=l An, 1 
(2.18a) 

C,~Jo(QpXp) + q J [ 2 j o ( a p )  +Q,4(K,)I 

(2.18 b) 

C,4(%) + DrnIo(a,) = 0. (2.18c) 

At the pore exit the solution must satisfy the arbitrary velocity profile (2.7).  Using 
the expression for the stream function in the inner region, (2.6), we require that 

W 

200+ c FnLsinh ( A , , l 4  + G,COSh ( A , , l - W  ~ , , ,JO(~, , lR)  
n := 1 

= - 4C, R2 - ( - 1 )" {C, a, Io(a, R )  + D, [ 2 Io(an R)  + a, Rll(a, n)]} 
n = l  

m 

(2.19 a )  
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Here the disturbance from the outer region a t  the pore exit is represented by the 
Fourier-Bessel series expressing the exit-velocity components. The left-hand side is 
observed to be a Dini-series representation of the right-hand side in (2 .19a) ,  while 
in (2.19b) it is a Fourier-Bessel representation of the right-hand side. Inversion of 
these together with ( 2 . 1 8 ~ )  yields the following relations: 

(2 .20a)  

F,[h,,,Lcosh(h,,,L) +sinh (h,,,L)]+G,h,,,sinh (h,,,L) = b,. ( 2 . 2 0 ~ )  

The kinematic solution for each region is now known in terms of the unknown 
velocity a t  the pore opening. The functions A(w)  and B(w), introduced in the stream- 
function representation of the outer region, have been obtained in terms of the f and 
g functions (2.14),  while the solution for the constant coefficients in the expression 
for the stream function in the inner region are known implicitly in terms of the 
constant coefficients in the series representation of the pore exit velocity (2.18),  (2.20). 
However, these two solutions have been obtained without taking account of the 
upstream influence in the pressure field across the plane of the pore. It is this latter 
dynamic condition which we now use to determine a unique solution for f ( R )  and 

The components of the stress tensor, to be matched at  Z = L, can be written in the 
g(R). 

general dimensionless form: 
T . . n j  = ( - S i j P + 2 e L j ) n i ,  

2 3  (2.21) 

where Si j  is the Kronecker delta, P is the pressure, 2eii is the rate-of-strain tensor and 
nj is the normal to the matching surface. Since the pressure in Stokes flow is a har- 
monic function it can be matched independently, leaving the normal and tangential 
components of e i j  to be matched. These components are given by 

Examination of (2.22) indicates that ezz and aU,IBR are continuous across the inter- 
face by virtue of the matched radial and axial velocity components. The matching of 
the remaining term aU,/aR can be replaced by requiring a continuous pressure gradient. 
This condition is a Consequence of the direct relations between the pressure gradient 
and the rate-of-strain tensor in steady creeping flow. Namely, a t  Z = L we require that 

PI = PI1 (0 <.R < I ) ,  (2.23 a )  

(2.23b) 

The general relations between the pressure and the stream function in steady creeping 
flow may readily be established from the Navier-Stokes equations. In  dimensionless 

(D2Yv7 
ap 1 a form these relations are 
_ - _ _  
i3Z - R aR 

(2.24a) 

(2.24 b )  
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The pressure field in each region is determined by integration of ( 2 . 2 4 )  with the 
appropriate stream-function representation. For the outer region the resulting equa- 
tion is 

( 2 . 2 5 )  

and for the inner region 
m 

n = l  
P I I ( R , Z )  = P o + 1 6 C o Z + 2  2 DnanIo(anR)sinclnZ 

03 

+ 2  C ~nh,lsinh(h,,lL)Jo(An,lR), ( 2 . 2 6 )  
n = l  

where Po is the uniform pressure at  the plane of symmetry Z = 0, and P, is the down- 
stream pressure as 2 + co. 

Introducing the expressions for the pressure, ( 2 . 2 5 )  and ( 2 . 2 6 ) ,  into the matching 
condition (2 .23) '  and substituting B ( w )  from ( 2 . 1 2 )  and ( 2 . 1 4 )  yields the following 
coupled integral equations : 

JOm 02Jo(wR) [F*(w, L )  + G*(w,  L)] do) 

W 

= gD+8LCo+ 2 Fnhn,lsinh(hn,lL)Jo(h,,lR) (0 < R < l ) ,  ( 2 . 2 7 ~ )  
n = l  

CO 

-/om w3J0(wR) [P*(u, L)  + G*(w,  L)]  dw = Scot- C Dn( - l)n,a;LIo(clnR) 
n = l  

is half the pressure drop across the pore. 
The above integral equations, to the best of the authors' knowledge, cannot be 

solved explicitly for the F* and G* functions unless the behaviour of the integrals in 
( 2 . 2 7 )  is specified for R > 1 (Tranter 1951) .  Clearly, such information cannot be 
provided because i t  requires knowledge of the solution for the pressure and its gradient 
along the exterior wall of the pore. Therefore it is advantageous to replace these 
functions by their appropriate series representations given by ( 2 . 7 )  and ( 2 . 1 3 ) ,  and 
to determine the unknown coefficients a, and b,  in the expansions. Furthermore, in 
order to eliminate the weak singularity in the pressure field, exhibited by the diver- 
gence of the integral expression at  R = 1, the pressure is integrated over the area of 
a circle of radius R. The resulting conditions represent the matching of the force 
acting on the interface between the two regions and its gradient, which are analytic 
everywhere in the interval 0 < I? 6 1 .  Following the outlined procedure, one obtains 
theequ a t' ions 

c a,Jo(~n,oR) = a * ( m  ( 2 . 2 9 a )  
m 

n-1 

( 2 . 2 9 b )  



m 

b*(R) = (4LC0+$hP) R+ C F,sinh(h,,,L) J1(h,,,R) 
n= 1 

Equations ( 2 . 2 9 )  are simply Fourier-Bessel series representations of the functions 
a*(R) and b * ( R ) .  A solution for a, and b, is readily available in the form 

b,  = - j; tb*(t)J,(h,,,t) dt. 
JWl,l) 

( 2 . 3 1 a )  

( 2 . 3 1 b )  

The integrals required in ( 2 . 3 1 )  are performed analytically (see appendix) resulting, 
after some rearrangement, in 

where ( 2 . 3 3 ~ )  

( 2 . 3 3  b )  

and the function X(x) is given by 

Here Hl is the Struve function of order one, and 2F3 is the generalized hypergeometric 
series. 

Equations ( 2 . 1 8 ) ,  ( 2 . 2 0 )  and ( 2 . 3 2 )  constitute the fundamental infinite set of linear 
algebraic equations for all six sets of unknown constant coefficients (C,, D,, F,, G,, a, 
and b,) and the constants Co and Do. This set can be reduced, by a standard elimination 
procedure, to include only four sets of unlrnown coefficients (Dn,  F,, G, and a?&) and the 
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constant C,. I n  addition, it is advantageous, for the purpose of numerical computa- 
t’ions, to define the unknown coefficients as follows: 

Consequently, the resulting system of equations is 

m 

i= 1 
SLCo+ x aia:j+piF!+CTtjG: = - & A T  

m 

lee0+ x ( a , a : ~ + ~ i D ~ ~ ) + F j F ~ 1 + G j 8 i 1  = 0, 
i = l  

m 

i= l  
Dj  DjIII + x (Fi;iiFij’I1 + GiG::’) = 0 ,  

- m 

i = l  
CojCo+ x ( a i a ~ ~ + ~ ~ D ~ ~ + + ~ F ~ ~ + G , G ~ ~ )  = 0, 

2C0+ (aiaT+plFH+G,Gy) = 0, 
m 

i = l  

where 

a:i = 2hi,0J1(hi,0)Aijh~,1,  Fj’ = A;,, coth (hi,lL)Jo(Aj,l), 

G$ = A;,, tanh (Ajil L) JO(hj,J,  a:$ = - 2J1(A,,,) AS,, - A;, 1 ’ 

(2.35) 

(2.36 a )  

(2.36b) 

(2.36 c )  

(2.36a) 

(2.36 e )  

(2.37a, b )  

(2.37c, d )  

(2.37% f, 9 )  

(2.37h) 

(2.37 i) 

(2.37j, k) 

(2.374 

I 

(2.37 m) 
(2.37n) C,:? = 2 tanh (h,,,L)h~,,J0(h,,,)Bij, 

1 
(2.370, PI a: = -Jl(Ai,o),  FT = 

Gp = - tanh (hi,lL)Jo(Ai,l), Coi = -- (2.37% r )  

L LA,, 1 

4 

2 
coth (h,,,L)--] Jo(Ai,l), 

4 , O  

L A;, 0 

1 

The unknown constant coeficients in (2.36) can be evaluated numerically to any 
degree of accuracy by increasing the number of equations utilized. 
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3. Numerical results 
Computations were performed on an AMDAHL/470/V6 computer. One first 

evaluates the coefficients C,, a,, D,, pn and 8, by solving successively larger trun- 
cations of (2.36). Truncation after N terms requires a solution of 4N + 1 linear algebraic 
equations which yield the first N values of each set of coefficients and the constant C,. 
Convergence of the results was tested by comparing the values of the volumetric flow 
rate Q ,  the constant C,, and the centre-line velocity a t  the pore exit for various values 
of the aspect ratio L, andthenumber of coefficients N (figures 2 (a-c)). Q was calculated 
by integrating the axial velocity a t  the pore exit over the area of the pore, while the 
centre-line velocity shown in figure 2 ( c )  is simply the sum of the a, coefficients ob- 
tained from the solution of (2.36). Figure 2 shows that for L N O(1) the results change 
by less than 1 y’, as N increases from 20 to  100, and that the convergence of these 
results deteriorates as L approaches zero. 

Values of the stream function ~ were computed next, for increasing values of N 
until they did not change in the first three significant figures. For L = 1, the value of 
the stream function was calculated from (2.6) (for the inner region) and (2.16) (for 
the outer region), using a grid of 10 x 10 points in each region, from which streamlines 
were drawn by interpolation (figure 3). The double integrals in (2.16) were calculated 
by analytically integrating the inner integrals and then using numerical integration 
to  evaluate the remaining improper integrals. The pressure field in the inner region was 
calculated from (2.26) using a grid of 10 x 10 points. The pressure field in the outer 
region was computed from (2.25) using a similar grid except in the local region near 
the edge of the orifice, 0-8 < Z < 1.2 and 0-8 < R < 2, where a finer grid of 40 x 120 
points was used. The integration in (2.25) was performed in a similar manner to that 
described for the calculation of the stream function from (2.16). Lines of constant 
pressure were drawn by interpolation and are shown in figure 4. I n  figure 5 the pressure 
field near the edge of the orifice is compared to the locally valid two-dimensional 
solution obtained by Weinbaum (1968). Qualitatively the two fields exhibit similar 
behaviour with increasing resemblance as the length scale near the edge of the orifice 
is further magnified. 

The streamline pattern shown in figure 3 for L = 1 is similar in the far field to the 
exact solution for the flow through a circular hole in a plane wall (Sampson 1891), 
while inside the pore the axial velocity approaches a Poiseuille profile with less than 
1 . 5 %  deviation after a short entrance distance equal to half the pore radius. The 
pressure field (figure 4) is also compatible with the far-field behaviour exhibited in 
Sampson’s solution and approaches the linear axial-pressure-gradient behaviour 
associated with Poiseuille flow inside the pore. 

Computations were carried out for various values of L between 0.25 and 2. When 
L > + the flow inside the pore approaches Poiseuille flow in the manner described 
above. Furthermore, if Poiseuille flow is established inside the pore the streamline 
pattern must remain similar for all values of L > =$ including the limiting case as 
L+m. Hence, for L > Q the velocity profile a t  the exit of the pore is unchanged. 
Figure 6 shows the radial and axial velocity components a t  the pore exit in com- 
parison to Poiseuille and Sampson profiles. An interesting result from this comparison 
is that the axial velocity a t  the exit of the pore can be computed from the arithmetic 
average of Poiseuille and Xampson profiles to four significant digits. 
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FIGURE 2. For legend see facing page. 

The volumetric flow rate was calculated directly from the value of the stream 
function on the boundary. I n  general, one can express the relations between the 
pressure drop across the pore AP‘ and the volumetric flow rate &’ as follows: 

Q’P AP‘ = II(L) -, 
a3 

where P‘ and Q’ are dimensional variables, ,u is the dynamic viscosity, a the pore radius 
and n ( L )  is a function of the aspect ratio L. For L = 0 Sampon obtained the result: 

rI(0) = 3 .  (3.2) 

For other values of L, II is shown in figure 7.  Clearly, the behaviour suggests linear 
relations between the pressure drop and the aspect ratio. A simple approximate 
expression for the pressure drop can be obtained by assuming Poiseuille flow through- 
out the pore and Sampson’s solution outside; then 

rI(L) = 1GL/n+3 .  ( 3 . 3 )  

The calculated values of H(L) were compared with equation (3 .3 )  and are shown in 
table 1. The good agreement between the exact and the approximate value is not 
surprising since the actual flow field deviates from the assumed one only in the vicinity 
of the pore opening and even in this region the local axial velocity profile does not 
depart significantly from a parabolic distribution. 



Creeping motion through an oriJce 517 

I I I I I I 

0 20 40 60 80 101 
- .. .~ 

N 

I I I I I 

L= 1 0.15 

L= 2 

0.05 I I I I I 
0 20 40 60 80 1( 

N 

FIGURE 2. (a)  Convergence test for the volumetric flow rate &. ( b )  Convergence test for the 
constant Go. (c )  Convergence test for the exit centre-line velocity U,(O, L ) .  

4. Concluding remarks 
The present solution for the flow through a finite-length pore suggests two general 

conclusions. First, the entrance effects are significant only near the pore opening, and 
decay to within 1.5 yo of a Poiseuille profile a t  a distance of half the pore radius when 
L > t .  Secondly, the pressure drop across an orifice of finite length can be closely 
approximated (less than 1 yo error) by (3.1) and (3.3), which do not account for the 
upstream influence across the pore opening. 

The method of solution used in the present problem can be easily applied to prob- 
lems with boundaries that cannot be defined by a natural co-ordinate system. In 
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FIGURE 3. Streamline pattern for the flow through a pore of finite length with L = 1. 
_ _ _ _ -  , Ssmpson's ( 1  891) solution for the flow through R zoro-thickness orifice. 
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FIGURE 4. Pressure field for the flow through a pore of finite length with L = 1 .  

particular, the study of filtration through nuclepore filters is modelled simply by a 
periodic distribution of equally spaced pores with an outer boundary which is a 
cylindrical volume coaxial with the pore. Furthermore, by combining the application 
of the procedure outlined, together with the collocation technique described in detail 
in Ganatos et al. (1978)) it is possible to study the motion of a sphere near boun- 
daries of more complex shape. The interesting problem of the axisymmetric creeping 
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z Z = L  

FIGURE 6. Radial and axial velocity profiles a t  the pore exit ( L  = 1 ) .  -----, Poiseuille profile; 
_ . _  ., velocity profile a t  the opening of a zero-thickness orificc (Sampson 1891). 

motion of a sphere towards a pore of finite length can be treated by using different 
stream-function representations for the finite pore and for the outer infinite half- 
space containing the sphere. Inside the pore, (2.6) is retained, while outside a super- 
position of the disturbances generated by t,he orifice wall and by the sphere yield: 

@' = @w+@', (4.1) 

where @, is given by (2.5) and @s is the axisymmetric spherical solution of the Stokes 
equation given by Sampson (1891): 

03 

@s = c [cnT-n+l+ n n r - n + 3 1  ~,(cOso). (4.2) 
I t - 2  
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FIGURE 7. Behaviour of the function II(L). 0 ,  Sampson (1891). 

Aspect W L )  
ratio ----A 

0 3.00t 3.00 
0.26 4.25 4.27 
0.5 5.51 5.55 
0.75 6.79 6.82 
1 .oo 8.06 8.09 
1-25 9.33 9.37 
1.5 10.6 10.6 
2.0 13.2 13.2 

- 
I, Exact (3.3) 

t Sampson (1891). 

TABLE 1 .  Comparison of the approximate expression (3.3) 
with the exact solution for II(L) 



Creeping motion through an orijice 52 1 

Here, ( r ,  0) are spherical co-ordinates, C, and D, are unknown constant coefficients 
and I, are the Gegenbauer functions of order n and degree - +. 

Using (2.7) for the exit-plane velocity representation the no-slip boundary condi- 
tions inside the pore can be applied in the manner shown in 5 2. Outside the pore, the 
no-slip boundary conditions are applied with the use of the Hankel transform, yielding 
solutions for A(w) and B(w) in terms of the spherical coefficients C, and D, and the 
unknown velocity a t  the exit plane. The pressure-matching conditions a t  the inter- 
face between the two regions provide relations for the unknown constant coefficients 
in the series representation of the exit velocity in a form of an incomplete set of linear 
algebraic equations containing the constants C, and D,. To complete this set, the 
no-slip boundary conditions on the surface of the sphere are satisfied a t  M discrete 
points, providing an additional 2NI equations for C, and D, to the set of linear alge- 
braic equations, which can be solved by any matrix reduction technique. 
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Appendix 
This appendix contains a detailed description of the analytic evaluation of the 

integrals in (2.31). Substitution of a*(R)  and b*(R) from (2.30) into (2.31) results in 
triple integrals, of which the inner and the outer are definite integrals, which can be 
easily evaluated leaving improper integrals of the form 

in (2.31 a ,  a),  respectively. 
Using the result given by Oberhettinger (1972), 

where Hv is the Struve function of order v (for a discussion of the Struve function see 
Watson 1958). The recurrence relations 

are used in (A 3) to replace the right-hand side with a Struve function of a positive 
order; then 

To evaluate Akn,  we write 

where 
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and t must be a root of Jo or J1. Furthermore, S(t)  can be written as follows: 

Z.  Dagan, S.  Weinbaum and R. Pfeffer 

From the addition theorem one can obtain the equation 

Jo(w) Jo(wa) = - Jo(o( 1 + a2 - 2n cos O)i-) dO. (A 8) 
n o  jn 

Substitution of (A 8) into (A 7 )  gives rise to an outer integral of the form given in 
Oberhettinger (1972), which can he evaluated. Differentiation with respect to a and 
setting a = 1 yields 

S(t) = ~ / ~ [ H l ( 2 t s i n ~ O ) - -  n siniOdO, ‘I 
or with the substitution cos 0 = p it becomes 

2 
H1(2tJ(l-p2))dp-;. 

The integral in (A 10) can be determined by making use of the series representation 
of Hl and term by term integration, then: 

16t2 2 s(t) = - F (2, I ; + , $ , $ ;  - t 2 ) - -  
9 n 2  n 

where 2F3 is the generalized hypergeometric series defined by 

and (a) ,  = r(a+k)/r(a).  (A 12b) 

The numerical evaluation of S(t)  can be accomplished by summing the series in 
(A 1 1 )  or by numerical integration of (A 10). The latter was found to be more efficient. 
The computation of Ifl in (A 10) was made possible by an expansion in series of 
Cfiebyshev polynomials given by Luke ( 1  969). Although the integration is numerical, 
it does not prolong the overall computation time because S(t)  is independent of the 
characteristic lengths in the problem and can therefore be performed once for all 
possible values of L and N .  
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